
Interferometric redatuming using direct wavefield modeling
Tiago A. Coimbra, Diego F. Barrera∗, Jörg Schleicher and Amélia Novais (University of Campinas & INCT-GP)
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Abstract

In recent years there has been a growing interest
to improve the petroleum exploration and processing
of seismic data using interferometric techniques.
Seismic interferometry allows the use of parts of the
information contained in the seismic data that are not
taken into account in conventional processing. Its
basic principle allows us to generate new seismic
responses or virtual sources where only receivers
were placed. In this work, we have developed an
interferometric redatuming technique that uses the
correlation of direct waves in a reference model
with scattered waves in the true model to reposition
sources and/or receivers for the latter. The correlation
with the direct wave only has the advantage that this
wave is generally easily accessible. If ocean-bottom or
borehole receivers are available, the direct wave can
be measured, or if a reference velocity model down
to a desirable datum is known, it can be determined
by modeling. The resulting redatuming technique has
worked satisfactorily on synthetic seismic data from a
three-layer model.

Introduction

Seismic interferometry is a technique based on optical
physics. It allows the use of parts of the information
contained in the seismic data that are not taken into
account in conventional processing. Its basic principle
allows us to generate new seismic responses or virtual
sources where only receivers were placed (Wapenaar
et al., 2010). In seismic exploration authors like Claerbout
(1968) and Scherbaum (1978) were the first to make use of
interferometric techniques. Claerbout (1968) showed that
the Green’s function for reflections recorded at the Earth’s
surface could be obtained by the autocorrelation of the
data generated by buried sources in a 1D medium, while
Scherbaum (1978), using information of microquakes,
constructed geological structure based on the properties
of the Green’s functions.

Interferometric redatuming techniques have been studied,
e.g., by Xiao and Schuster (2006), Schuster and Zhou
(2006), Dong et al. (2007), Lu et al. (2008), van der
Neut et al. (2011) and many others. They attempt
to use the techniques with the objective of improving
the seismic sections and reducing the uncertainty in
hydrocarbon exploration in regions of high structural and

sedimentological complexity. The redatuming technique’s
principal applications are the correction of seismic data for
effects of an acquisition at an irregular surface and for the
effects of complex geological structures in the overburden
and low velocity layer. The objective is to focus the seismic
data processing in a specific subsurface region.

Interferometric redatuming can be used to relocate sources
to positions where only receivers are available and allows
to carry the seismic acquisitions from the surface to
geologic horizons of interest. In this work, we correlate
the modeled direct wavefield with seismic surface data
to relocate the acquisition system to any datum in the
subsurface to where direct waves can be modeled with
sufficient accuracy.

The derivation starts from a convenient approximation
of the seismic interferometry equation using Green’s
theorem on the Helmholtz equation with density variation.
It proceeds to the general redatuming equation and
the specific approximation discussing the correlation of
acquired seismic data with modeled direct waves. In the
numerical results section, we apply the new redatuming
method to a simple synthetic example to simulated data as
if aquired with sources and receivers at the ocean bottom.

Theory

In this section we describe the basic theory of
interferometry for acoustic media with density variation. We
deduce the reciprocity theorem, interferometry principle
and the Green’s function approximation. We start at the
inhomogeneous Helmholtz equation, which is written as
follows

ρ(x)∇ ·
[

1
ρ(x)

∇ψ̂(x,ω)

]
+

ω2

v2(x)
ψ̂(x,ω) =−F̂(x,ω), (1)

where ρ(x) is the variable density, ψ̂(x,ω) is the field
pressure, ω is the angular frequency, v(x) is wave velocity,
and F(x,ω) is the source term.

In the special case of a temporal and spatial point source,
i.e., when the source term F(x,ω) is given by a delta
function δ (x− xA), the pressure field is represented by the
Green’s function Ĝ(x,ω;xA), so that the Helmholtz equation
reads

ρ(x)∇ ·
[

1
ρ(x)

∇Ĝ(x,ω;xA)

]
+

ω2

v2(x)
Ĝ(x,ω;xA) =−δ (x− xA).

(2)

Gauss’s theorem relates an integral over a closed surface
∂E of an arbitrary vector field to an integral over the
enclosed volume E of the divergence of the vector field.
Choosing the vector field appropriately, this theorem can
be written as (Green, 1828)

©
∫

∂E

∫
(ψ̂∇Ĝ− Ĝ∇ψ̂) · n̂dS =

∫∫∫
E

∇ · (ψ̂∇Ĝ− Ĝ∇ψ̂)dV, (3)
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where n̂ is the versor normal to the surface ∂E pointing into
the outward direction of the volume E.

Reciprocity Theorem

x
Ax c

B

Figure 1: Sketch of a source at position xA with a receiver
at position xB, where c is the representation of a wave path
from xA to xB.

We consider the situation in Figure 1. Upon the use of
equation (3), we deduce the reciprocity theorem for points
xA and xB a variable-density medium.

We start from equations (1) and (2). For simplicity, we write
ψ̂ = ψ̂(x,ω) and ĜA = Ĝ(x,ω;xA). Multiplying equation (1)
by ĜA, we obtain

ρ(x)ĜA∇ ·
[

1
ρ(x)

∇ψ̂

]
+

ω2

v2(x)
ĜAψ̂ =−F̂(x,ω)ĜA, (4)

and multiplication of equation (2) by ψ̂ yields

ρ(x)ψ̂∇ ·
[

1
ρ(x)

∇ĜA

]
+

ω2

v2(x)
ψ̂ĜA =−δ (x− xA)ψ̂. (5)

Subtracting equations (4) and (5), integrating over an
arbitrary volume E, and applying Green’s theorem (3), we
find

©
∫

∂E

∫ 1
ρ(x)

(
ψ̂∇ĜA− ĜA∇ψ̂

)
· n̂dS =

∫∫∫
E

1
ρ(x)

[
F̂(x,ω)ĜA−δ (x− xA)ψ̂

]
dV. (6)

Using the Sommerfeld radiation condition, is possible
demonstrate that the left-hand-side integral of the above
equation tends to zero when the radius of the closed
surface tends to infinity, i.e.,

lim
r→∞

©
∫

∂E(r)

∫ 1
ρ(x)

(
ψ̂∇ĜA− ĜA∇ψ̂

)
· n̂dS = 0. (7)

This results in the following equation for the solution to
equation (1) at a point xA,

ψ̂(xA,ω) = ρ(xA)
∫∫∫
R3

1
ρ(x)

F̂(x,ω)ĜAdV. (8)

Considering F̂(x,ω) = δ (x− xB), we have

Ĝ(xA,ω;xB) = ρ(xA)
∫∫∫
R3

1
ρ(x)

δ (x− xB)Ĝ(x,ω;xA)dV, (9)

which results in the identity

Ĝ(xA,ω;xB)

ρ(xA)
=

Ĝ(xB,ω;xA)

ρ(xB)
. (10)

From the equation (10), we see that the Green function
between points xA and xB is not reciprocal, if the values
of the densities at these points are different. However,
a density-scaled Green’s function (Bleistein et al., 2001)
is reciprocal as can be seen by multiplying each side of
equation by a density factor:[

Ĝ(xA,ω;xB)

ρ(xA)
=

Ĝ(xB,ω;xA)

ρ(xB)

]√
ρ(xA)ρ(xB) (11)

or √
ρ(xB)

ρ(xA)
Ĝ(xA,ω;xB) =

√
ρ(xA)

ρ(xB)
Ĝ(xB,ω;xA) . (12)

The density-scaled Green’s function can then be defined
as

ĝ(x,ω;xs) =

√
ρ(xs)

ρ(x)
Ĝ(x,ω;xs), (13)

where xs is the source position. Conversely, the Green’s
function can be recovered from its density-scaled version
by

Ĝ(x,ω;xs) =

√
ρ(x)
ρ(xs)

ĝ(x,ω;xs). (14)

Note that in the case of constant density the density-scaled
Green’s function ĝ(x,ω;xs) reduces to the Green’s function
Ĝ(x,ω;xs) itself.

With definition (13), the reciprocity relation (12) reads

ĝ(xA,ω;xB) = ĝ(xB,ω;xA). (15)

Interferometry

Let us now review the basic interferometry equation (see,
e.g., Wapenaar et al., 2010). We consider the case where
we have a closed surface with receivers located on it.
Inside the enclosed volume, we have two sources located
in positions xA and xB (see Figure 2).

We start from the complex conjugate of the Helmholtz
equation (1) with a point source at xB. With the simplified
notation G∗B = Ĝ∗(x,ω;xB), where the asterisk denotes the

x
x

Figure 2: Sketch of two sources at positions xA and xB
inside a volume E with receivers along the closed surface
∂E of E. Indicated at position x are the propagation
directions of the incoming waves from xA and xB, and their
angles θA and θB with respect to the unit normal vector n̂ to
the surface.
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complex conjugate, the corresponding Helmholtz equation
reads

ρ(x)∇ ·
[

1
ρ(x)

∇Ĝ∗B

]
+

ω2

v2(x)
Ĝ∗B =−δ (x− xB). (16)

Multiplying equations (2) and (16) by Ĝ∗B and ĜA,
respectively, and subtracting the results, we find

∇ ·
[

1
ρ(x)

(
ĜA∇Ĝ∗B− Ĝ∗B∇ĜA

)]
=

1
ρ(x)

(
δAĜ∗B−δBĜA

)
.

(17)

Integration over an arbitrary volume E, Application of
Green’s theorem, and consideration of the reciprocity
relation (10) leads to

©
∫

∂E

∫ 1
ρ(x)

(
ĜA∇Ĝ∗B− Ĝ∗B∇ĜA

)
· n̂dS =

−2i
ρ(xB)

Im
[
Ĝ(xB,ω;xA)

]
.

(18)
This is the fundamental relationship for all interferometry
techniques, because it proves that the Green’s function
of the propagation from xA to xB can be obtained with
information about the wavefield propagating from xA and
from xB to (all) receivers on the closed surface. This only is
possible if xA and xB are inside the closed surface.

Green’s function approximation

For practical purposes, equation (18) is still inadequate,
because it is extremely rare that data on closed surfaces
are available. Moreover, the Green’s functions’ gradients
generally are unknown. Therefore, the quantities in
equation (18) need to be approximated by practically
available data. For the following considerations, we refer
again to Figure 2.

In the high-frequency situation, we can replace the Green’s
functions by their asymptotic WKBJ approximation,

Ĝ(x,ω;xs)≈ L(x;xs)exp [−iωT (x;xs)] . (19)

There, T is the traveltime from xs to x which satisfies
the eikonal equation ‖∇T (x;xs)‖2 = 1

v2(x) and L(x;xs)

is the geometrical spreading. Still in high-frequency
approximation the Green’s function’s gradient can be
approximated by

∇Ĝ(x,ω;xs)≈−iωĜ(x,ω;xs)∇T. (20)

Substituting equations (19) and (20) in (18) and defining
Θ(x;xA,xB) =

cosθA+cosθB
2v(x) , we obtain

−ωρ(xB)©
∫

∂E

∫ 1
ρ(x)

ĜAĜ∗BΘ(x;xA,xB)dS≈ Im
[
Ĝ(xB,ω;xA)

]
.

(21)
Assuming that the surface is sufficiently far from the points
xA e xB, we can approximate θ ≈ 1

v(x) . Thus, in far-field
approximation, we can write

−ωρ(xB)©
∫

∂E

∫ 1
ρ(x)v(x)

ĜAĜ∗BdS≈ Im
[
Ĝ(xB,ω;xA)

]
. (22)

Considering the equations (13) and (15), we can recast
equation (22) into the form

−ω©
∫

∂E

∫ 1
v(x)

ĝ(xA,ω;x)ĝ∗(xB,ω;x)dS≈ Im [ĝ(xA,ω;xB)] . (23)

Equation (23) shows that the situation of Figure 2 can be
exchanged for one where instead of sources inside the
volume, there are receivers, and instead of receivers at the
surface, there are sources. This is the reciprocity principle
(see Figure 3).

Figure 3: Sketch of two receivers inside a volume E at
positions xA and xB and sources along the closed surface
∂E of E.

Redatuming

datum

surface

xB

xA

Figure 4: Sketch of the surface parts α and γ. Also shown
is datum β as a reference to the redatuming of the array at
the surface.

Considering the theoretical part above, we can imagine
that the surface ∂E in the Figure 2 can be divided into two
surfaces α and γ (see Figure 4). The surface α contain the
sources and receivers of a conventional seismic array, and
γ is a surface part that is needed to close it. Also shown in
Figure 2 is a reference surface β for redatuming, where a
new source is located.

We suppose that seismic data have been aquired for
sources at points xA and receivers along the seismic
array, and that a velocity model is known for the medium
between surfaces α and β so that the direct wave from
all points xB on β to all points on α can be estimated
by seismic modeling. We will show in this section that
cross-correlation of this modeled direct waves with the
seismic surface data allows to approximately redatum
the acquisition array (sources and receivers) to reference
datum β .

The total Green’s function for the wavefield at surface α can
be decomposed in a unique way as Ĝ = Ĝi + Ĝs (Bleistein
et al., 2001), where Ĝi is the solution of the wave equation
in some reference medium and Ĝs is the difference to the

Thirteenth International Congress of The Brazilian Geophysical Society



INTERFEROMETRIC REDATUMING USING DIRECT WAVEFIELD MODELING 4

complete solution in the medium under consideration. For
a point source at xA, Ĝi

A = Ĝi(x,ω;xA) must satisfy

L0Ĝi
A =−δ (x− xA), (24)

where L0 is the Helmholtz operator for the reference
medium, involving the density ρ0 and and velocity v0
instead of ρ and v.

The scattering field Ĝs
A = Ĝs(x,ω;xA) must then satisfy a

perturbed wave equation that can be written as

L0Ĝs
A =−V (x)

[
Ĝi

A + Ĝs
A

]
, (25)

where V (x) = L − L0 is the difference between the
perturbed and uperturbed Helmholtz operators, called the
perturbation operator or scattering potential (Rodberg and
Thaler, 1967).

Using equations (24) and (25), we can set up an equation
similar to equation (17). For this purpose, we multiply
equation (25) with Gi∗

B and the complex conjugate of
equation (24) for a point source at xB with Gs

A. Subtracting
the results, we arrive at

∇·
[

1
ρ0(x)

(
Ĝs

A∇Ĝi∗
B − Ĝi∗

B ∇Ĝs
A

)]
=

1
ρ0(x)

(
Ĝi∗

B V ĜA−δBĜs
A

)
.

(26)

After application of Green’s theorem, this yields

©
∫

α+γ

∫ 1
ρ0(x)

(
Ĝs

A∇Ĝi∗
B − Ĝi∗

B ∇Ĝs
A

)
· n̂dS =

∫∫∫
E

Ĝi∗
B V ĜA

ρ0(x)
dV −

Ĝs
BA

ρ0(xB)
. (27)

Taking the surface γ in equation (27) to represent the lower
semisphere with radius r, we can write∫

γ

∫ 1
ρ0(x)

(
Ĝs

A∇Ĝi∗
B − Ĝi∗

B ∇Ĝs
A

)
· n̂dS≈

2π∫
0

π/2∫
0

rĜs
A

ρ0(x)
r

(
iω

v0(x)
cosθAĜi∗

B +
∂ Ĝi∗

B
∂ r

)
dΩ. (28)

where dΩ = sinθdθdφ is the differential of the solid angle.
According to Wapenaar’s radiation condition, this integral
can be considered as tending to zero when r tends to
infinity.

Therefore, only integration along surface α remains
in equation (27). After high-frequeny approximations
analogous to equations (19) and (20), equation (27) allows
to approximately calculate the scattered field at xB as

ĝs(xB,ω;xA)≈ iω
∫
α

∫ ĝs
Aĝi∗

B
v0(x)

dS+ ÎBA, (29)

where
ÎBA =

∫∫∫
E

ĝi∗
B V ĝAdV , (30)

denotes an undesired scattering term that gives rise to
spurious events.
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Figure 5: Modeling seismic data considering: (a) array
of sources and receivers on the surface, (b) array of the
sources on the surface and receivers at 350m of depth and
(c) all array redatuming at 350m of depth.

Equation (29) is the principal theoretical result of this work.
It states that it is possible to redatum surface data by
means of interferometry using direct-wave modeling. This
equation allows to obtain the Green’s function at xB for a
point source at xA by the cross-correlation of the modeled
direct wave in xB with the acquired wavefield in xA.
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Numerical modeling

To numerically validate the interferometry-redatuming
equation (29) derived in this work, we devised three
experiments, synthetically simulating a marine-seismic
situation. The 2D model is 1 km long and 750 m deep
(see Figure 5 and consists of a flat ocean bottom at 350 m
depth and two curved and a planar reflector below. The
velocities range from 1500 m/s in the water to 3000 m/s
in the lowermost layer. The seismic experiments consider
three situations: (1) shots and receivers at the surface
(Figure 5a), (2) shots at the surface and receivers at the
ocean bottom (Figure 5b) and (3) shots and receiver at the
ocean bottom (Figure 5c). The synthetic seismic data and
the direct waves needed for the redatuming process were
modeled using Norsar’s ray-tracing code.

The seismic array on the surface consisted of sources and
receivers spaced at 20 m, covering the range between
100 m and 900 m (Figure 5a). The source array for the
second experiment is the same, and the receiver array at
350 m depth covers the space between 400 m and 600 m,
spaced at 10 m (Figure 5b). The final experiment used
both sources and receivers at these positions at 350 m
depth (Figure 5c). The wavelet used for the synthetic
seismograms was a Ricker wavelet of 50 Hz. For simplicity,
we considered constant density in all layers.

Results

Figure 6 compares the results of interferometry redatuming
the data from experiment 1 to the configuration of
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Figure 6: Seismic interferometry redatuming of data from
the numerical model of Figure 5. (a) Modeled seismic data
at depth; (b) redatumed data, i.e., seismic surface data
cross-correlated with the modeled direct wave.

experiment 2 using equation (29) (Figure 6b) to the
modeled data (Figure 6a). For this purpose, we modeled
the direct waves from all receivers at depth to all source
positions at the surface. Shown in Figure 6 are all common-
receiver gathers at the new depth. We see that the
kinematic properties of the data are nicely matched, while
the amplitudes have suffered some alterations.

For a more detailed analysis of the dynamic properties,
Figure 7 compares the redatumed trace at the center
of both the source and receiver arrays to the modeled
one. We see that the principal difference in amplitudes
is the direct wave, which is not covered by the theoretical
development. The amplitudes of the reflected events are
comparable.

The data of Figure 6 have then been used as an input
to a second redatuming step to to acquisition geometry
completely at the ocean bottom. Figure 8 compares
the resulting zero-offset sections to the modeled data
at depth. We see that the one-step redatuming of
the ocean-bottom-receiver data (Figure 8b) recovers the
modeled data (Figure 8a) quite nicely. Though the two-
step redatuming of the surface data introduces some noise
and weak spurious events, the three reflection events are
still correctly positioned.

The trace-to-trace comparison at midpoint coordinate
500 m (Figure 9) reveals that positions and relative
amplitudes of the three reflection events are correctly
recovered by both the one-step and two-step redatuming
procedures. The interferometric wavelet changes by the
correlations, and some noise becomes visible in the two-
step result (Figure 9c).

Conclusions

In this work, we have developed an interferometric
redatuming technique that uses the correlation of direct
waves in a reference model with scattered waves in the true
model to reposition sources and/or receivers for the latter.
For this purpose, we started at the Helmholtz equation with
density variation and reformulated the reciprocity theorem
for this situation.

We have tested the resulting redatuming technique on
synthetic seismic data from a three-layer model. We
simulated surface-seismic data, ocean-bottom-receiver
data, and a complete ocean-bottom acquisition for

0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

1a

b

Figure 7: Comparison of trace 400 from Figures 6a and
b. (a) Modeled trace with sources at the surface and
receivers at 350 m depth; (b) interferometric redatuming
trace, obtained from correlating the direct wave with the
data acquired at the surface.
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Figure 8: Zero-offset sections at the ocean bottom. (a)
Seismic data modeled with sources and receivers at
depth, (b) one-step interferometric redatuming of data with
sources at the surface and receivers at depth; (c) two-
step interferometric redatuming of data with sources and
receivers at the surface. Direct waves have been muted for
display.

comparison. In a first step, we redatumed the receivers
of the surface data to the ocean bottom and compared
the results to the data modeled with this geometry. We
found that the reflected events were correctly recovered in
position and amplitude. In a second step, we redatumed
the sources of both the modeled and redatumed ocean-
bottom-receiver data. While in this step, again all reflection
events were treated correctly, we found that the two-step
redatuming of the surface data introduced some noise and
spurious events.

The correlation with the direct wave only has the advantage
that this wave is generally easily accessible. If ocean-
bottom or borehole receivers are available, the direct wave
can be measured, or if a reference velocity model down

0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

1

2a

b

c

Figure 9: Comparison of trace at midpoint coordinate
500 m of Figure 8. (a) Data modeled at depth; (b) Source
interferometric redatuming of data with source at the
surface and receivers at depth; (c) two-step interferometric
redatuming of surface data.

to a desirable datum is known, it can be determined by
modeling.
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